Brilliance CRE Agar for simple screening of carbapenem-resistant Enterobacteriaceae, including NDM-1

SAVES TIME
• Results in just 18 hours, helping minimize the opportunity for transmission

REDUCES COSTS
• Identify CRE colonized patients earlier, for more targeted treatment and better patient outcomes

EASY TO READ
• Clearly differentiated CRE colonies
• The novel pigmented background makes it easy to spot other (non-CRE) resistant organisms, like *Acinetobacter*

CONVENIENT AND EASY TO USE
• Direct inoculation from patient sample; swab, stool or urine
• Much simpler to perform and interpret than Modified Hodge Test
Oxoid Brilliance CRE Agar

Brilliance CRE Agar makes detecting patients colonized with carbapenem-resistant Enterobacteriaceae (CRE) easy, reducing the need to perform complex confirmational methods, such as Modified Hodge Test. The formulation contains a modified carbapenem at a level recommended by both EUCAST and CLSI, ensuring reliable results with a wide variety of CRE, including those with the New Delhi Metallo β-lactamase 1 (NDM-1) mechanism. The two-chromogen system differentiates *E. coli* (pink) from the *Klebsiella, Enterobacter, Serratia and Citrobacter* (KESC) group, which grow blue. The novel background makes the white or naturally pigmented colonies of non-CRE organisms, such as *Acinetobacter*, easy to spot, and results are available in just 18 hours.

Sample Processing

Inoculate Brilliance CRE plate directly with pea-sized bead or loopful of specimen.

Inoculate plates at 37°C for 18–24 hr

Resistant Non-CRE*

 Pale Pink

Blue

Klebsiella, Enterobacter, Serratia and Citrobacter (KESC)

CRE Positives

Performance

Carbapenems (imipenem, meropenem, ertapenem and doripenem) are invaluable for the treatment of infections due to multiresistant, Gram-negative bacteria, including producers of extended-spectrum β-lactamases (ESBL). However, the rapid emergence and dissemination of Enterobacteriaceae that are resistant to carbapenems poses a considerable threat to clinical patient care and public health. Early detection of carbapenem-resistant Enterobacteriaceae (CRE) will allow faster implementation of appropriate strategies to limit the spread of these pathogens.

Brilliance CRE Agar was evaluated, alongside MacConkey Agar with 1µg/mL imipenem and a competitor agar “K”, for the detection of CRE (according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines), using a panel of geographically diverse isolates. The panel comprised 43 CRE, seven other carbapenem-resistant organisms, including *Acinetobacter* spp. and *Pseudomonas* spp., and 99 carbapenem-sensitive organisms.

References

Sample Processing

Inoculate Brilliance CRE plate directly with pea-sized bead or loopful of specimen.

Inoculate plates at 37°C for 18–24 hr

Resistant Non-CRE*

 Pale Pink

Blue

Klebsiella, Enterobacter, Serratia and Citrobacter (KESC)

CRE Positives

Performance

Carbapenems (imipenem, meropenem, ertapenem and doripenem) are invaluable for the treatment of infections due to multiresistant, Gram-negative bacteria, including producers of extended-spectrum β-lactamases (ESBL). However, the rapid emergence and dissemination of Enterobacteriaceae that are resistant to carbapenems poses a considerable threat to clinical patient care and public health. Early detection of carbapenem-resistant Enterobacteriaceae (CRE) will allow faster implementation of appropriate strategies to limit the spread of these pathogens.

Brilliance CRE Agar was evaluated, alongside MacConkey Agar with 1µg/mL imipenem and a competitor agar “K”, for the detection of CRE (according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines), using a panel of geographically diverse isolates. The panel comprised 43 CRE, seven other carbapenem-resistant organisms, including *Acinetobacter* spp. and *Pseudomonas* spp., and 99 carbapenem-sensitive organisms.

References

References

References